Matematika

Pertanyaan

jika x,y, dan z memenuhi sistem persamaan:

1/x+2/y+2/z=10
2/x+1/y-3/z=4
1/x-3/y+4/z=-3

maka x+y+z adalah .....

ket. 1/x itu pecahan 1 per x

2 Jawaban

  • Misal :
    1/x = a
    1/y = b
    1/z = c

    a + 2b + 2c = 10 ... (1)
    2a + b - 3c = 4 ... (2)
    a - 3b + 4 = -3 ... (3)

    Eliminasi (a) : (1) dan (2)
    2a + 4b + 4c = 20
    2a + b - 3c = 4
    Kurangkan
    3b + 7c = 16 ... (4)

    (1) dan (3)
    Kurangkan
    5b - 2c = 13 ... (5)

    Eliminasi (b) : (4) dan (5)
    15b + 35c = 80
    15b - 6c = 39
    Kurangkan
    41c = 41
    c = 1
    1/z = 1
    z = 1 ✔

    Dr pers (4)
    3b + 7c = 16
    3b = 9
    b = 3
    1/y = 3
    y = 1/3 ✔

    Dr pers (3)
    a - 3b + 4c = -3
    a - 9 + 4 = -3
    a = 2
    1/x = 2
    x = 1/2 ✔

    ••
    x + y + z = 11/6 ✔
  • 1/x +2/y + 2/z = 10
    2/x +1/y - 3z = 4
    1/x -3/y +4/z = -3
    misal 1/x = a, 1/y = b, dan 1/z = c, maka
    a + 2b + 2c = 10 ...(1)
    2a + b -3 c = 4 ...(2)
    a - 3b + 4c = -3 ...(3). ambil (1) dan (2), dieliminir a, maka. (1) x 2
    2a + 4b + 4c = 20
    2a + b - 3 c = 4
    ---------------------- -
    3b + 7c = 16.....(4)
    Ambil (1) dan (3), eliminasi a.
    a + 2b + 2c = 10
    a - 3 b + 4c = -3
    --------------------- -
    5b - 2c = 13....(5).
    Ambil (4) dan (5), eliminasi b, maka
    3b + 7c = 16. x 5
    5b - 2c = 13. x 3
    15b + 35c = 80
    15b - 6c = 39
    ------------------ -
    41c = 41
    c = 41/41 = 1. Ambil (4)
    3b + 7c = 16
    3b + 7.1 = 16
    3b + 7 = 16
    3b = 16 -7
    3b = 9
    b = 9/3
    b = 3. Ambil (1)
    a + 2b + 2c = 10
    A
    a + 2.3 + 2.1 = 10
    a + 6 + 2 = 10
    a = 10-8 = 2, maka
    1/x = 2.==> x = 1/2
    1/y = 3 ==> y = 1/3
    1/z = 1 ==> z = 1
    maka x + y + z = 1/2+1/3+1
    = 3/6+2/6 +6/6
    = 11/6
    = 1 5/6



Pertanyaan Lainnya