Matematika

Pertanyaan

request dari siswa B.

tolong ya.
request dari siswa B. tolong ya.

2 Jawaban

  • 1)
    a.
    [tex] m = \frac{y_2-y_1}{x_2-x_1} \\ m = \frac{4-6}{-1-0} \\ m = \frac{-2}{-1} \\ m = 2 [/tex]
    b.
    [tex] m = \frac{y_2-y_1}{x_2-x_1} \\ m = \frac{-1-5}{3-(-2)} \\ m = \frac{-6}{5} [/tex]

    2)
    a.
    Gradien garis p
    [tex] m_p = \frac{1-3}{2-(-1)} \\ m_p = \frac{-2}{3} [/tex]
    b.
    Garis p tegak lurus garis q maka,
    [tex] m_p . m_q = -1 \\ \frac{-2}{3} . m_q = -1 \\ m_q = \frac{3}{2} \\ \frac{2-a}{2+a-4} = \frac{3}{2} \\ 2(2-a) = 3(a-2) \\ 4 - 2a = 3a - 6 \\ 10 = 5a \\ a = 2 [/tex]
    c.
    Dilampirkan pada gambar
    Garis p merah, garis q oranye


    3)
    Garis (i) 5x - 6y + 2 = 0
    6y = 5x + 2
    y = [tex] \frac{5}{6}[/tex]x + [tex]\frac{1}{3}[/tex]
    [tex] m_i = \frac{5}{6} [/tex]

    Garis (ii) melalui (4,-3) dan tegak lurus garis (i)

    [tex] m_i . m_ii = -1 \\ \frac{5}{6} . m_ii = -1 \\ m_ii = \frac{-6}{5} [/tex]

    Masukkan ke persamaan garis y = mx + c, dengan (x,y) dari titik yg diketahui.

    y = mx + c
    [tex] -3 = \frac{-6}{5} . 4 + c \\ -3 = \frac{-24}{5} + c \\ c = \frac{9}{5} [/tex]

    Jadi persamaan garis (ii) [tex] y = \frac{-6}{5}x + \frac{9}{5} [/tex].


    4)
    2x + 3y = 12

    Titik potong sumbu X
    y = 0
    2x + 3.0 = 12
    x = 6
    Titiknya (6,0)

    Titik potong sumbu Y
    x = 0
    2.0 + 3y = 12
    y = 4
    Titiknya (0,4)

    Hubungkan kedua titik *gambar dilampirkan*
    *warna biru*


    5)
    Persamaan garis
    y = 5x - 3

    Titik A (2,p), substitusi ke persamaan
    p = 5.2 - 3
    p = 7

    Titik B (q,-3), substitusi ke persamaan
    -3 = 5q - 3
    0 = 5q
    q = 0
    Gambar lampiran jawaban RexyGamaliel
  • 1.
    a. P(0, 6) dan Q(-1, 4)
    x1 = 0
    x2 = -1
    y1 = 6
    y2 = 4

    m = (y2 - y1) / (x2 - x1)
    m = (4 - 6) / (-1 - 0)
    m = (-2)/(-1)
    m = 2

    b. C(-2, 5) dan D(3, -1)
    x1 = -2
    x2 = 3
    y1 = 5
    y2 = -1

    m = (y2 - y1) / (x2 - x1)
    m = (-1 - 5) / (3 - (-2))
    m = (-6)/(5)
    m = -6/5

    2.
    a. titik (-1,3) dan (2, 1)
    x1 = -1
    x2 = 2
    y1 = 3
    y2 = 1

    m = (y2 - y1) / (x2 - x1)
    m = (1 - 3) / (2 - (-1))
    m = (-2)/(3)
    m = -2/3

    b. tegak lurus p
    m1 = -2/3
    m2 = 3/2

    (4, a) dan (2+a, 2)
    x1 = 4
    x2 = 2+a
    y1 = a
    y2 = 2

    m = (y2 - y1) / (x2 - x1)
    3/2 = (2 - a) / (2+a - 4)
    3/2 = (2 - a) / (a - 2)
    2(2 - a) = 3(a - 2)
    4 - 2a = 3a - 6
    3a + 2a = 4 + 6
    5a = 10
    a = 2

    3. melalui titik K(4, -3) tegak lurus 5x - 6y + 2 = 0
    5x - 6y + 2 = 0
    m = -a/b
    m = -5/(-6)
    m = 5/6

    tegak lurus
    m2 = -6/5

    (y - y1) = m(x - x1)
    (y - (-3)) = -6/5(x - 4)
    (y + 3) = -6/5(x - 4)
    ----------------------------- kedua ruas dikali 5
    5(y + 3) = -6(x - 4)
    5y + 15 = -6x + 24
    6x + 5y = 24 - 15
    6x + 5y = 9

    4.
    2x + 3y = 12

    titik potong sumbu x
    y = 0
    2x + 3(0) = 12
    2x = 12
    x = 6
    titik potong (6, 0)

    titik potong sumbu y
    x = 0
    2(0) + 3y = 12
    3y = 12
    y = 4
    (0, 4)

    5.
    y = 5x - 3

    A (2, p)
    p = 5(2) - 3
    p = 10 - 3
    p = 7

    B(q, -3)
    -3 = 5(q) - 3
    -3 = 5q - 3
    5q = -3 + 3
    5q = 0
    q = 0

    Gambar lampiran jawaban newwiguna
    Gambar lampiran jawaban newwiguna