Matematika

Pertanyaan

Tentukan hp untuk 0°_< x _< 360 °
a.2 cosx + 2 sin x =√2
b.cos x - √3 sin x - 1=0

_< kurang dari

1 Jawaban

  • 0° ≤ x ≤ 360°

    *Menggunakan rumus
    a sin x + b cos x = [tex] \sqrt{a^2+b^2} [/tex] sin (x - @)
    dengan tan @ = b/a *

    a)
    2 cos x + 2 sin x = √2
    [tex] \sqrt{2^2+2^2} [/tex] sin (x - @) = √2

    *tan @ = 2/2 = 1 ; maka @ = 45° atau 225° *
    (i)
    2√2 sin (x - 45°) = √2
    sin (x - 45°) = 1/2
    sin (x - 45°) = sin 30°

    x - 45° = 30° ± k.360°
    x = 75° ± k.360°
    x = 75°

    x - 45° = (180°-30°) ± k.360°
    x = 195° ± k.360°
    x = 195°

    (ii)
    2√2 sin (x - 225°) = √2
    sin (x - 225°) = 1/2
    sin (x - 225°) = sin 30°
    *sama*


    b)
    cos x - √3 sin x = 1
    [tex] \sqrt{(-√3)^2+1^2} [/tex] sin (x - @) = 1
    2 sin (x - @) = 1
    sin (x - @) = 1/2

    * tan @ = -√3/1 = -√3 ; maka @ = 120° atau @ = 300° *

    (i)
    sin (x - 120°) = sin 30°
    x - 120° = 30° ± k.360°
    x = 150° ± k.360°
    x = 159°

    (ii)
    sin (x - 120°) = sin 30°
    x - 120° = (180°-30°) ± k.360°
    x = 270° ± k.360°
    x = 270°

Pertanyaan Lainnya